Das Ziel dieser Arbeit ist es, die nichtlinearen Methode der kleinsten Quadrate als Optimierungsverfahren für die Lokalisierung mithilfe von Distanzsensoren innerhalb von Mesh Karten zu testen. Die nichtlineare Methode der kleinsten Quadrate bietet die Möglichkeit, Datenausreißer mithilfe von Verlustfunktionen zu filtern. Dadurch stellt sich die Frage, ob diese Methode besser für reale Daten geeignet ist als andere. Um dies zu testen wurde die nichtlineare Methode der kleinsten Quadrate innerhalb von MICP-L (Mesh ICP Lokalisierung) umgesetzt, um sie mit dem dort verwendeten Kabsch-Umeyama-Algorithmus zu vergleichen.